
Adaptive Workflows with Syrup
Syrup is an adaptive Workflow system with a difference. Like any other Workflow solution,
Syrup can be used to describe the tasks, procedural steps, required input and output informa-
tion and tools needed for each step in a business process [1]. To be able to do this, Syrup pro-
vides five basic concepts: Tasks, Links, Workflows, Workers and the WorkSpace. Additionally,
the minimal core is build in such a way that integrating Syrup into an existing infrastructure
poses a minimal challenge to developers.

Syrup can overcome the von Neumann bottleneck that stops traditional software systems
from scaling [2]. It does this by strictly separating the specification, identification and execution
phase of Workflows in a distributed setup. Although the phases are explicitly separated, this
doesn't mean that each phase can't be expressed in terms of one another. For example,
Workflows can be dynamically compiled by other Workflows in Syrup. This Lisp-like flexibility
gives developers a chance to maximize concurrency and the distribution of Workflows even
further [3].

Note that Syrup doesn't follow the more complex standards such as Wf-XML, BPML and
XPDL [4]. Instead it provides the basic building blocks to implement any of the standards - and
hopefully more.

Example Workflow
The following example shows a simple mail filter to give a first taste of what Workflows are
about.

All mails of 'myname' are read by ReadMail. These mails are
pushed through and filtered on the keywords 'problem, error
and help'.
The mails that contain these keywords are pushed through
SendMail and send to 'problems@anotherhost.com'.

While this example may be considered not very realistic, it is already very close to a real im-
plementation. Indeed Workflow solutions can help bridge the gap between specification and
implementation, not only at the initial phase but also throughout the whole development
cycle. Ideally, Syrup could serve as an intermediate (visual) language that can be talked by both
developers and the business [5].

To see how to build Workflows with Syrup, the basic building blocks are introduced first.

Task
A Task is a static description of how work must be done. It can describe a calculation, trans-
formation or any other programmable function. Tasks are managed by Syrup and executed by
Workers.
One or two inputs are given as parameters before a Task can be executed. These input values
are determined at runtime and they are typically produced by other Tasks.
After execution, the Worker may have produced one or two outputs based on the Task's static

Adaptive Workflows with Syrup

Adaptive Workflows with Syrup	
 1

description and inputs. At the same time, the Task's inputs may have been consumed so that
the Task will be ready for a next round of execution.

Tasks are graphically depicted as filled squares with a certain color and label.
The label describes the function and the color indicates the state of a Task:

The green color indicates the state EXECUTABLE.
The blue color indicates the state WAITING.
The grey color indicates the state DONE.

A Task also has a fixed type, indicated by its boundary line that is either dotted or
solid. Type OR is indicated by the dotted boundary line. Type AND is indicated by
the solid boundary line.

Tasks can turn from WAITING into EXECUTABLE and vice versa during the execution of a
Workflow. In contrast, when Tasks are DONE they will stay DONE forever. A Task is WAITING
when its inputs are not available or when it is prohibited to generate outputs. Finally, when a
Task is in state EXECUTABLE it may consume inputs and generate outputs when executed.

Tasks of type OR are ready for execution if either of the two inputs is available. Type AND Tasks
can only execute if both inputs are available. The availability of inputs and the prohibition for
Tasks to generate outputs is fully determined by Links.

Link
A Link is a connection between the output of one Task (the source) and the input of another
(the destination). Another possibility for a Link is to have only one Task at its ends. This type of
Link will typically mark the initialization or finalization of a Task or even a whole Workflow.
Links can be in two states: they are either FULL with information or they are EMPTY. It is only
when the destination Tasks of Links are executed, that Links can turn from FULL to EMPTY.

Consequently, a Task can only turn into EXECUTABLE when all its outgoing Links are EMPTY.
After execution, a Task may have consumed input - clearing its (full) ingoing Links - and it may

Adaptive Workflows with Syrup

Adaptive Workflows with Syrup	
 2

Links are graphically depicted as lines connecting squares. The arrowhead shows
the direction of the Link - from one Task to another Task.

The 'from' side of a Link can be either the first output (white diamond) or the
second output (black diamond). The 'to' side of a Link can be either the first in-
put (white arrow) or the second input (black arrow).

The label indicates that the Link is FULL with data. This can be either the data
itself or a reference to the data (i.e. an URL).

have produced outputs - filling its (empty) outgoing Links. Following this pattern for each ex-
ecutable Task, it becomes clear that Links manage the data flow between Tasks [6].

Workflow
Workers execute Tasks to consume inputs and produce outputs, but they can also do some-
thing more special: create new Workflows. A Workflow is essentially a network of Tasks and
Links between them. New Workflows can dynamically be added during the run of a Workflow
or adapted to meet new business requirements. Adaptive Workflows can be regarded as the
most powerful feature of Syrup.

The following example shows this feature in more detail:

Adaptive Workflows with Syrup

Adaptive Workflows with Syrup	
 3

1: The Launch Task is ready to
take a XML Workflow descrip-
tion and expand the description
into a Syrup Workflow.
The XML description declares
the Tasks ('d' and 'f') and the bind-
ings and links. The references to
Tasks (d-1, d-2, f-1 and f-2) con-
tain suffixes -1 and -2 to specify
which input or output is taken
(first or second).

2: The Launch Task has been executed and expanded to a
new Workflow. The Launch Task's old inputs and outputs
are now bounded to the new Duplicate and Flip Task. The
surrounding box 'Launch' indicates that the Launch Task
became the parent of the new Tasks.

Worker
The Worker is the entity that does the actual work described by a Task. Workers are needed
because Syrup is only concerned with the administration and coordination of Tasks and not
with their execution. Workers use Syrup to know what Tasks need to be executed and in what
order. Workers also deal with the efficient use of computational resources and the scheduling
of Tasks.

Besides interacting with Syrup, Workers may decide to interact with other systems while exe-
cuting Tasks (databases for instance). They can even decide to collaborate with other Workers,
using only the 'directory' service of Syrup. By using this single service, efficient Peer to Peer
(P2P) solutions could be build on top of Syrup without much effort.

WorkSpace
This is the top-level container holding the Tasks managed by Syrup - the ultimate parent of all
Tasks. It is the WorkSpace that enables Workers to query Tasks, mark them for execution or
commit results. The interaction between Workers and the WorkSpace is what makes a well
behaved system. Because the Workspace holds and manages all the Tasks, most of the time it
can be regarded synonymous to 'Syrup' itself.

Determinism
Syrup enforces that Tasks executed by Workers behave in a deterministic way - output should
solely depend on the given input (pure functions) [7]. This property is essential for Syrup to
ensure that faulty executions, due to crashed Workers, can be rolled back safely.

Adaptive Workflows with Syrup

Adaptive Workflows with Syrup	
 4

3: The Duplicate Task has duplicated the '1' input to
both its outputs.

4: The Flip Task has flipped the '1' input to output
'0'.

If this was not so, Syrup would be held responsible for actions based on the internal state of
Workers. Because Syrup cannot possibly know everything about the internal state of Workers,
this functional restriction can be justified.

Non-Determinism
If Syrup were purely deterministic, how then can it react to external events? External, real
world events are notorious for their non-determinism - they just happen.

Syrup provides two special inputs to receive external events and two special outputs to gen-
erate external events. In fact, it is only via these special inputs and outputs that the Syrup sys-
tem can be bootstrapped, for instance, to receive Workflows from the external world.

The two ingoing Links of the WorkSpace can be filled to signal
events from the external world (represented by the non-labeled
box). The two outgoing Links can be consumed to publish Syrup
events to the external world. Only specialized Workers are allowed
to do this.

There is another, more subtle kind of non-determinism. This is introduced by type OR Tasks
that may depend on the relative timing between two inputs (comparable to race-conditions)
[8].
For example, consider a Task that has the following behavior: if the earliest available input is
the second, the output will be 1. Likewise, if the earliest input is the first, the output will be 0.

Design and Implementation
Environment
The default implementation is done in Java, but is not restricted to Java alone. The implementa-
tion is also able to control Perl, shell scripts or C++ executables in a distributed environment.
This makes Syrup ideally suited for developing system integrations [9].

Distribution
Remember that Syrup itself does not execute Tasks. It only manages the flow between Tasks
and the creation of new Workflows. However, Syrup does track all the Workers that have re-
quested the execution of Tasks so that Workers will cooperate nicely.

Syrup can track thousands of distributed Workers that execute Tasks concurrently, making dis-
tributed computation a reality. It is also designed in such a way that crashed Workers, network
failures or other exceptions do not influence the outcome of a Workflow [10].

Persistence
Tasks are managed with the aid of a persistent backing store so that no Task or execution re-
sult is ever lost during the lifetime of a Workflow. Persistence is desirable when Workflows
take weeks or even months to complete or when (partial) failure is not an option.

Adaptive Workflows with Syrup

Adaptive Workflows with Syrup	
 5

The default implementation uses (My)SQL [11] to store and retrieve Tasks. But other, poten-
tially more distributed stores such as JavaSpaces [12] could be used to achieve even higher
performance.

Scheduling
In the UNIX environment, the cron utility is primarily used to schedule jobs on a single host.
Note however, that cron doesn't prevent the loss of scheduled jobs when the machine is tem-
porary offline [13]. Alternatively Syrup could replace cron so that jobs can be scheduled relia-
bly on a single host but also across multiple hosts.

Example crontab
Consider the replacement of cron entries by Syrup. The following approach could be taken:
For every cron entry, create a Workflow that includes the following two Tasks:

• a Task that can track time (for every workday) and signals when a certain deadline has
passed.

• a Task that runs the shell command that would have normally be run by cron. After it re-
ceives the time signal from the first, it executes the shell command.

The following diagrams show the replacement of the following cron entry: '00 13 * * 1-5 /usr/
bin/zip /backup/backup.zip /tmp/*'.

For Workflows to be executed by a Worker, a cron entry (can be on different hosts) has to be
added to start the Worker and to run it frequently and reliably throughout the day. Each time
a Worker is launched by the cron scheduler, it will fetch Tasks from the Workspace and exe-
cute them. By adding more and more Workers to the crontab, higher levels of parallelism can
be achieved without much effort.

Adaptive Workflows with Syrup

Adaptive Workflows with Syrup	
 6

The Alarm has signaled that the deadline has
passed.

The Shell Task has run '/usr/bin/zip /backup/backup.zip /tmp/*'.
After execution, it produced stdout on the first output and
stderr on the second output.

Syrup processing
Tasks can be executed by Workers, but who runs the Workers? As the previous cron example
showed, Workers are typically run by a concrete operating system but could - in principle - be
humans as well. Workers are build to run forever (at least during the lifetime of their hosts)
possibly having executed thousands of Tasks that were taken one-by-one from a WorkSpace.

Although Workers are considered to be the active Agents that have the ability to process
something, they are not only concerned with executing Tasks. In fact, Workers have to first find
a WorkSpace to be able to do something useful. And after the WorkSpace has been found, a
Worker has to query it for Tasks to be executed. So, besides execution, Workers have to do
some additional processing in order to find and retrieve Tasks from a WorkSpace.

Query and select
Idle Workers can start querying the WorkSpace for Tasks waiting to be executed. When such
Tasks are found, they are carried out in a specific order - based on the Worker's internal
scheduling policy.

Adaptive Workflows with Syrup

Adaptive Workflows with Syrup	
 7

1: There are 2 Shells being executed by 2 different
Workers concurrently. The label of the dotted line indi-
cates the (HTTP) address of each Worker. The first Shell
will sleep for 30 seconds and then output 'slept 30 sec-
onds' to stdout. The second Shell will sleep for 40 sec-
onds and then output 'slept 40 seconds'.

2: The first Shell is finished while the second is still in
progress. The Concatenation of the strings 'slept 30
seconds' and ' -- ' has finished. Note that Workers that
execute small Tasks (~1 second) such as Concat will
publicize their address for the same short period of
time (~1 second). It is only during the execution of
medium to big Tasks that addresses will be visible to
other Workers.

Before execution of any single Task, a Worker must notify the WorkSpace that it wants to do
so. This notification has two effects:

First, the Worker identifies itself as a 'reachable' resource by creating a unique (communica-
tion) address where the Worker can be reached. During execution, the Worker is expected to
respond to any request send to that address. Second, the communication address is stored in
the WorkSpace. So, for each Task that is in progress, there will be an associated and known
address.

Given an address, other Workers are able to check whether the executing Worker is still ac-
tive. If the Worker is not responding to requests, other Workers may decide to take a turn in
executing the Task.
The preferred address type that is used among Workers is an URL referring to an HTTP ad-
dress. The choice of using the HTTP protocol is convenient because HTTP requests are syn-
chronous and are thus more responsive when compared to the email protocol for example.

As the previous examples have shown, Tasks can be in one additional state: EXECUTING. This
state is indicated by the green fill color of the EXECUTING Task and a self-referencing dotted
edge. The corresponding label states the URL address of the Worker executing the Task.

Execution and failure
As previously mentioned, Syrup is resilient towards network failures or power outages. Still
there is one type of failure that is difficult to catch, in particular the case in which Workers

Adaptive Workflows with Syrup

Adaptive Workflows with Syrup	
 8

3: The second Shell is finished and produced 'slept 40
seconds' on stdout.

4: The string 'slept 30 seconds -- ' is concatenated with
the string 'slept 40 seconds'.

may have crashed or are otherwise blocked. This problem is closely related to identifying
(from the outside) which processes are still doing something useful or which of them are in
some kind of infinite loop.

For example, a Worker preempted (put to the background) by the operating system is essen-
tially doing nothing but hasn't exactly failed either. The Worker just has to wait for another
time-slice to continue. The difficulty is that the (preempted) state of one Worker is hard to
assess by others. In fact, the only way to check the state of a Worker is by sending it a request.
When no reply is received within a certain amount of time, the associated Worker is consid-
ered to be crashed and will be removed from the Workspace as an active Agent.

This scheme has one drawback. A Worker could possibly still have been operational but was
somehow not able to respond to requests (for example, because of network failure). And
when such a 'disconnected' Worker tries to commit the execution result to the Workspace
there will be an error because some other Worker has taken control over the same Task
(while it was disconnected). In this rare case a Task may have been executed twice (or more)
by different Workers after subsequent failures (although only one result is committed to the
WorkSpace). In general, distributed systems cannot prevent redundant executions without
incurring great communication costs. Syrup also doesn't prevent redundant executions. Instead
it adopts another algorithm that tries to keep redundant executions to an absolute minimum
[14].

When Tasks are to be executed multiple times however, it is important to know that they be-
have like pure functions (see Determinism). The alternative - impure functions - should be
avoided because they typically modify state outside the realm of Syrup (like modifying data-
base records or transferring money). Such stateful programs usually require that their modifi-
cations be applied once (and only once) to ensure overall correctness.

In contrast, the proper and exclusive use of pure functions will always yield the same outcome
regardless of how many times they are executed.

Temporal data
If state cannot be avoided it is best to use temporal databases. Temporal doesn't mean they
are thrown away after use. Instead they have the unique property that state cannot be changed
in time but only added (with explicit timestamps). Practice has shown that if Syrup and tempo-
ral databases are married, they are able to produce fully accountable, easily distributable and
very scalable systems [15].

Controlling complexity
It is the dream of the author that, when dealing with increasingly more complex systems, solu-
tions like Syrup and temporal databases can give programmers and business people more in-
sight and less to worry about. And if not, Syrup could at least make the building and running of
software more fun.

Adaptive Workflows with Syrup

Adaptive Workflows with Syrup	
 9

References
[1] T. Bayens: The state of Workflow.
[2] J. Backus: Can programming Be Liberated from the von Neumann Style?
[3] P. Graham: On Lisp.
[4] W. van der Aalst: WorkFlow patterns.
[5] R.E Horn: Visual Language and Converging Technologies in the Next 10-15 Years (and Be-
yond).
[6] J.P. Morrison: Flow-Based Programming.
[7] J. Hughes: Why Functional Programming Matters.
[8] E.A. Lee, T.M. Parks: Dataflow Process Networks.
[9] Sun microsystems: The Java Language Specification.
[10] F.C. Gartner: Fundamentals of Fault-Tolerant Distributed Computing in Asynchronous
Environment.
[11] MySQL: http://www.mysql.com
[12] Sun microsystems: JavaSpaces (TM) Service Specification
[13] UNIX manual pages: crontab - user crontab file.
[14] G. Malewicz: Distributed Scheduling For Disconnected Cooperation.
[15] F. Bajers: The Consensus Glossary of Temporal Database Concepts.

Adaptive Workflows with Syrup

Adaptive Workflows with Syrup	
 10

